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Biaxial monotonic and fatigue fracture of some
commercial ABS and PVC sheets
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Biaxial loading of pre-cracked cruciform testpieces has been preformed in a novel rig
attached to a uniaxial testing machine. Fracture toughness R or dc of the ductile acrylonitride
butadiene styrene (ABS) and polyvinyl chloride (PVC) determined by the Cotterell–Mai
method is dependent on remote biaxiality. Least toughness is shown for equibiaxial tension;
greatest for uniaxial tension. These monotonic fracture results may be modelled using
void growth mechanics. Fatigue crack growth rates also depend on remote biaxiality.
Paris/Walker representation of the data shows that the slopes n of log (da/dN) versus log *K
do not change much, but the constant of proportionality C decreases as the tensile mean
stress increases. There may be a connection between the biaxial-dependent C and R or dc .
 1998 Kluwer Academic Publishers
1. Introduction
While plastic flow under combined stresses has been
studied for many polymers (pressure-dependent an-
isotropic yield criteria, etc. (e.g. [1] for a review)), there
is very little information available for biaxial fracture
and low and high cycle fatigue of polymers. Standard
texts on polymers [e.g. 2, 3] have essentially no in-
formation of this sort. In the literature, Leevers and
co-workers [4, 5] looked at high cycle fatigue of poly-
methylmethacrylate (PMMA) and polyvinylchloride
(PVC), where da/dN for PMMA reduced somewhat at
tensile biaxialities but where there was no apparent
effect for PVC; Takemori [6] investigated fatigue of
discs impacted by a plunger, data from which was
analysed in traditional S-N terms. This lack of data is
rather surprising given the known effects of biaxiality
on fracture and fatigue of metals [7—9] and given the
possibility of molecular orientation at crack tips in
polymers where local properties are not only different
from bulk properties but are locally anisotropic as
well; the propagation of cracks, their energetic stabil-
ity and directional stability must all depend on this
sort of thing. Given the lack of information, one is led
to wonder what criteria are used in the design of
polymer pipelines, shell structures, pressure vessels,
containers, storage vessels and such like which operate
under biaxial loading. It would appear that it is often
assumed that the ‘‘second stress’’ has no effect on
fracture and fatigue. Yet the presence of an applied
transverse stress can markedly change the shape of the
in-plane shear stress contours in the near vicinity of
the crack tip [10]. This must affect molecular orienta-
tion patterns at crack tips and crack initiation and
propagation.

The paucity of biaxial data can hardly be a result of
disinterest. Rather it may be caused by perceived prac-
0022—2461 ( 1998 Kluwer Academic Publishers
tical difficulties of testing. Conventional biaxial testing
machines, using four independently controlled ac-
tuators (or two with linkages) to keep the test section
of cruciform specimens stationary, are expensive.
Sometimes uniaxially loaded specimens, having in-
clined cracks, are employed to get mixed tensile and
shear (modes I and II) cracks but such specimens
cannot provide simple biaxial stresses in varying
ratios. Again tubular specimens (stressed in various
combinations of internal/external pressure, axial and
torsional loads) have been used, with and without
starter cracks, and a range of biaxialities are possible.
However, material has to be available in tubular form
and there can be end-pressure-sealing problems. Re-
views of different specimens for biaxial testing, with
advantages and disadvantages and the ranges of bi-
axialities attainable (sometimes very limited in prac-
tice), are given in [8, 9].

There is a simple and inexpensive way of achieving
biaxial loading on a standard uniaxial tensile testing
machine, which we now use routinely at Reading. The
idea was proposed for testing aircraft fabrics in the
First World War and was described in Flight Maga-
zine in 1919 [11]. Fig. 1 shows how different tensile
biaxialities are achieved by orientating the cruciform
at different angles in the testing machine. For example,
a 45° set-up produces a 1 : 1 tensile loading; 30° a 1.73
(perpendicular to the ligament) : 1 (parallel to the liga-
ment); 60° a 0.59 : 1 loading. Table I gives the loading
ratios for different angles with respect to the axis of the
tensile testing machine. Fears that superimposed bend-
ing would detract from the simplicity of the method
have been allayed by experiments and finite element
calculations [12], and indeed bending seems hardly
significant until quite large displacements are imposed
as shown by tests on gridded neoprene sheet rubber
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Figure 1 Different orientations of test rig with respect to pulling
axis of uniaxial testing machine to give different biaxiality ratios.

TABLE I Load ratios at different angles with respect to testing
machine axis.

Orientation, h Load ratio, k

0° uniaxial (R)
30° 1.73 : 1
35° 1.43 : 1
40° 1.19 : 1
45° 1 : 1
50° 0.84 : 1
55° 0.70 : 1
60° 0.58 : 1

samples; uniform biaxial loading is produced in the
centre of the testpiece.

Different-length loading rods have to be used with
each loading ratio, for which there are appropriate
attachment holes in the loading frame. Of course,
orientations of (45°#h) and (45°!h) use the same
pairs of rods, but swapped orthogonally. Each pair of
rods is strain-gauged and calibrated for load; checks
were made to confirm that the total load given by the
the uniaxial testing machine corresponded with the
resolved components from along the loading rods

P
505!-

"P
M#3!#,

cos h#P
@@#3!#,

sin h (1)

The biaxiality ratio is given by the force resolution
perpendicular to the axis of the testing machine

P
@@#3!#,

cos h"P
M#3!#,

sin h (2)

P
M#3!#,

/P
@@#3!#,

"cot h (3)

Greater and smaller ratios than those given in Table I,
while possible, involve very long connecting rods and
the whole device becomes extremely wide. Note that
the rig permits situations where the loading parallel to
the crack can be greater than the loading perpendicu-
lar to the crack.

In the work described in this paper we used cruci-
form testpieces having two cracks along the centre
lines of the ‘‘transverse arms’’ to leave a ligament in the
centre of the specimen directly across the line of action
of the ‘‘axial’’ load (Fig. 2). In this way we have the
equivalent of the ‘‘deep double edge notch’’ (DENT)
specimen loaded across the ligament, but now addi-
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Figure 2 Typical cruciform double-edge notch testpiece.

tionally side-loaded parallel to the ligament. It is pos-
sible to have a centre-cracked cruciform testpiece, but
experiments show that the ends of the cracks do not
always propagate along the ligament, except for the
severest biaxiality ratios.

The choice of DENT cruciform testpieces is also
influenced by the Cotterell—Mai method of analysis
for monotonic ductile fracture toughness which is
employed in this investigation, which was originally
established for DENT testpieces loaded uniaxially
[13—15]. The essential features of the test method are:
(i) to measure the work done º in breaking different
length ligaments (the distance ¸ between the ends of
the starter cracks); (ii) to plot that work normalized by
¸t (where t is the thickness of the sheet) versus ¸; and
(iii) to determine the fracture toughness from the ordi-
nate intercept of the plot. A complementary analysis is
to determine the critical crack opening-displacement
(COD, d

#
) by back extrapolation of a plot of the

load-point-displacement at final fracture (d
&
) versus ¸.

The theory behind this second method of analysis may
be found in Cotterell and Mai [16].

Commercial acrylonitrile butadiene styrene (ABS)
and PVC samples were used for both monotonic
and fatigue measurements. The ABS sheets were
1.5 mm and 5 mm thick; the PVC was 3 mm thick.
The 1.5-mm ABS had a yield strength of some 25 MPa
and UTS of 36 MPa; for the 6 mm ABS, the corres-
ponding results were some 24 MPa and 32 MPa. Both
thicknesses were essentially isotropic (see Table II).
The PVC samples drew down in the tensile test, with
peak stress before necking of some 46 MPa and draw-
ing stress of 35 MPa. The sheets were again isotropic
for all practical purposes.

2. Experimental results
2.1. Monotonic loading
When the ligament breaks under the biaxial loading,
the load drops. However, unlike the uniaxial DENT



TABLE II Tensile tests on 6-mm thick ABS

Specimen no. 1 2 3 4 5 6 7 8 9

Orientation (degrees) 0 0 0 45 45 45 90 90 90
Width (mm) 30.15 30.04 30.03 30.09 30.10 30.11 30.06 30.11 30.04
Yield load (kN) 4.60 4.48 4.39 4.28 4.23 4.35 4.40 4.45 4.51
Yield stress (MPa) 25.43 24.87 24.38 23.72 23.39 24.05 24.38 24.63 25.02
Strain at yield (%) 4.17 4.00 3.83 3.83 4.05 4.00 3.89 3.75 3.83
Maximum load (kN) 5.92 5.90 5.90 5.66 5.62 5.50 5.80 5.92 5.95
UTS (MPa) 32.74 32.71 32.76 31.36 31.11 30.43 32.18 32.75 33.01
Strain at UTS (%) 6.41 6.31 6.34 5.98 6.34 5.92 6.26 6.11 6.13
Energy to failure (J) 44.72 33.65 29.70 52.96 43.00 27.32 89.32 70.64 41.38
Failure strain (%) 10.90 8.74 7.78 12.96 10.97 7.66 19.92 15.65 9.92
Figure 3 Typical P—d plots from cruciform testpieces, in this case
3 mm PVC (k"0.58 : 1).

test where the two halves of the specimen can separate
and where in consequence the load drops to zero, the
load drops only a certain amount when using cruci-
form testpieces owing to the restraining effect, after
ligament fracture, of the two side arms which remain
unbroken at the grips. To obtain the work dissipated
in fracture, the testpieces are unloaded on the testing
machine, to give load—displacement (P—d) diagrams,
such as shown in Fig. 3.

There are, of course, three P—d diagrams to inspect,
namely: (i) the testing machine total load versus cross-
head displacement (corrected for machine stiffness);
and the pair of P—d diagrams for the loads (ii) across
the uncracked ligament; and (iii) parallel to the un-
cracked ligament. An interesting question arises as to
what work area should be used for º in biaxial Cot-
terell—Mai º/¸t versus ¸ plots, namely: is it the total
work done as given by the testing machine autograph
trace; or is it merely the work done perpendicular to
the crack; or is it even some combination of the com-
ponents of work done perpendicular and parallel to
the crack? When the investigation commenced, we
were not sure and, as will be evident from the results
given later, different answers are given by these differ-
ent possible interpretations of º. The question was
resolved with the use of displacement gauges along
and perpendicular to the uncracked ligament. It
showed that the load-point displacement parallel to
the crack essentially ceases at crack propagation (or at
necking if that precedes cracking in ductile materials)
and that no external work is done in the transverse
direction during propagation. Thus the dissipated
work º for use in the Cotterell—Mai º/¸t versus
¸ plots, from which the biaxial R are obtained, is that
done perpendicular to the uncracked ligament. The
work done, in the zone of plasticity around the liga-
ment, by loads parallel to the uncracked ligament
before fracture, causes microstructural damage in the
region where the crack eventually propagates. The
magnitude of this effect depends upon the biaxiality,
and hence the fracture toughness R will change with
biaxiality.

2.2. Fatigue loading
Biaxial DENT testpieces, the same as shown in Fig. 1,
were cyclically loaded between zero (in reality a slight-
ly positive load) and fixed fractions of the monotonic
failure loads of the testpiece in the same orientations.
The cycling rate was some 15 c.p.m. As the setting of
the testing machine was load-based and as, in conse-
quence, the deflection increased as the crack length
propagated, the cycling rate reduced to some 10 c.p.m.
by the end of a typical test. The proportions of the
failure load used in fatigue were 50, 32 and 25% for
ABS specimens, and 50 and 25% for PVC specimens.
In fatigue testing, loads both perpendicular and paral-
lel to the crack fluctuate simultaneously owing to the
design of the biaxial rig. It is not possible in this
arrangement to fix the load on one axis and cycle the
load on the other axis.

The growth of cracks in fatigue was monitored
using JVC TKS 350 video cameras with time-lapse
recorders. Crack growth occurred from both ends of
the uncracked ligament, the cyclically-growing cracks
approaching one another until final fracture occurred
across the remaining ligament, at the maximum cyclic
load. Final fracture usually occurred by plastic col-
lapse in these ductile polymers, the final ligament
length being given approximately by x¸

0
where x is

the percentage of the monotonic failure load used in
the fatigue test (25, 32 or 50%, as given above) and ¸

0
is the starting ligament length. Most of the fatigue
crack propagation occurred under elastic conditions
even so, as evinced for example by stress whitening in
PVC occurring only at the final stages of crack meet-
ing across the remaining ligament. It was unusual for
observable cracking to commence simultaneously at
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both ends of the ligament. Most often cracking started
at one end before the other owing to different notch
acuities produced by Stanley blades at the ends of the
starter cuts. For purposes of analysis, the two separate
crack growths were added and divided by two to give
an average crack growth rate (da/dN).

The fatigue data were analysed by determining the
crack growth rate (da/dN) and log plotting against
*K (the range of the applied stress intensity factor), to
see if Paris-type relations were followed. Owing to the
complicated cruciform geometry and biaxial loading,
we used at every biaxiality the simple linear-elastic
fracture mechanics (LEFM) Irwin formula for the
uniaxially-load DENT testpiece, [17] namely:

*K"*r (pa)1@2 [tan(pa/¼)/(pa/¼)]1@2 (4)

where 2¼ is the width of a cruciform arm and a the
effective length of each edge crack (the starting crack
length a

0
being given by a

0
"¼!¸

0
/2 where ¸

0
is

the length of the starting ligament); *r is the range of
applied stress given by

*r"(r
.!9

!r
.*/

)+P
.!9

/2¼B (5)

with B the thickness of the testpiece.

3. Results
3.1. Monotonic fracture
Fig. 4(a) shows plots of the total normalized work
versus ligament length for 6.0 mm thick ABS, and
Fig. 4(b) shows the work done perpendicular to the
fracture versus ligament length from the same data.
It is clear that the results ‘‘flip-flop’’ when plotted in
these different ways, i.e. normalized total energy
(º/¸t) is greatest for lowest biaxiality (highest orienta-
tion angle of cruciform testpiece) and least for highest
biaxiality (zero angle of orientation), whereas nor-
malized perpendicular energy is greatest for highest
biaxiality and least for lowest biaxiality. Furthermore,
the slopes of º/¸t versus ¸ plots are different for
different biaxialities when total work is employed,
becoming steeper for least biaxialities. In contrast the
slopes in the perpendicular work plots are almost
parallel except for the lowest biaxialities. A similar
pattern is observed in the d

&
versus ¸ plots for various

thickness materials, where the slopes are parallel, ex-
cept for the lowest biaxialities, e.g. Fig. 5.

The work perpendicular to the ligament gives, from
the ordinate intercepts, the greatest fracture toughness
R or d

#
for uniaxial DENT testing with a pattern of

decreasing R or d
#

as the sideways loading is in-
creased. Beyond a 1 : 1 biaxiality (45° orientation of
cruciform); however, the toughness changes again.
This is caused by crack turning, where at high loads
parallel to the ligament, the crack ceases to propagate
all the way across the ligament. An extreme example is
shown in Fig. 6(a).

Should necking occur across the ligament preceding
fracture at low biaxialities, it can happen that
‘‘straight-across’’ fracture occurs for smaller biaxiality
than 1 : 1 (Fig. 6b), but eventually, at even lower bi-
axialities (greater transverse loads), the cracks will
turn and invalidate the results.
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Figure 4 Plots of (a) º
505!-

/¸t versus ¸ ( , 60°; j, 55°; m, 50°; ],
45°; n, ; h, ; , ; s) and (b) º

1%31
/¸t versus ¸ (s, 0°; , 30°; h, ; n,

; ], ; j, ; m, ; ,) for for 6-mm thick ABS showing complete
reversal of data. Ordinate intercepts give fracture toughness.

Fig. 7 gives the monotonic toughness results for
ABS and PVC as a function of load biaxiality.

3.2. Fatigue
Fig. 8(a)— (d) show a set of crack growth data at
increasing number of cycles for 1.5 mm thick ABS
fatigued at 50% of the monotonic failure load at
various biaxialities. Cases where the crack growth at
the two ends of the crack (‘‘left’’ and ‘‘right’’) are
almost identical, and where they differ somewhat, are
illustrated. Similar patterns were shown for other sam-
ples of ABS fatigued at other fractions of the mono-
tonic failure load, and for PVC samples.

Average crack growth rates were obtained from the
slopes of the a versus N results, and plotted against the
range of applied stress intensity factor, using Equation
1 for *K. Fig. 9 gives representative results for ABS
and PVC samples, with da/dN in mm/cycle and *K in
MPa (m)1@2. We see that although the slopes n of these
Paris plots change little with biaxiality (n+8), the
constant C in

(da/dN)"C(*K)n (6)

is much affected by biaxiality. In particular, C de-
creases as the transverse load increases.

Given that different biaxialities produce different
mean stresses across the ligament, it was appro-
priate to investigate the applicability of mean-stress-
modified Paris equations. In particular, we looked at
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Figure 5 Plots of d
&
versus ¸ for (a) 6-mm thick ABS; (b) 1.5-mm

thick ABS; and (c) 3-mm thick PVC. Ordinate intercepts give COD.
s, 0°; h, 30°; , 40°; £, 45°; e, 50°; , 55°; , 60°.
Figure 6 Examples of crack turning under extreme ‘‘sideways’’
loading in 1.5-mm thick ABS.

Walker’s modification to the Paris relation, [18, 19]

da

dN
"C@rm

.%!/
*Kn (7)

where r
.%!/

"(r
.!9

#r
.*/

)/2. In our case, r
.*/

+0
always, so the equation becomes

da

dN
"C@(r

.!9
/2)m*Kn (8)

That is, our previous C values become

C"C@(r
.!9

/2)m (9)

Fig. 10 shows log—log plots of C versus (p
.!9

/2) for
different thicknesses of ABS. The agreement is not too
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Figure 7 Variation of R and COD with biaxiality. PVC: d, R; s, d
#
.

ABS: n, d
#
6 mm, £, d

#
1.5-mm.

bad, except for cases where the crack turned where the
points do not lie on the line at all. Also, at smallest
(r

.!9
/2), there is some departure from the best fit line.

For that line for all ABS data 2]10~2(C(10~1

and !8(m(!7.
We also note that the reduction in C with biaxiality

corresponds with the similar reduction in R or d
#
. We

have too few data to investigate this properly but, at
least for fatigue at small fractions of the monotonic
failure load we find

C"2.65]10~4 (d
#
)0.8

for 1.5 mm thick ABS fatigued at 25% of the mono-
tonic failure load under various biaxialities (d

#
in mm,

C in Equation 5 for da/dN in mm/cycle and *K in
Figure 8 Examples of crack growth in fatigue of 1.5-mm thick ABS, cycled at 50% of monotonic failure load, under different biaxialities. (a)
uniaxial (0°, Table I); (b) 1.73 : 1 (30° MAJ); (c) 1 : 1 (45°); (d) 0.58 : 1 (60°, i.e. 30° MIN). s, left; h, right; n, combined.
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Figure 9 Paris plots of log (da/dN) versus log (*K).

MPa (m)1@2). Also

C"10~4 (d
#
)2.4

for 3 mm PVC biaxiality fatigued at 25% of the mono-
tonic failure load.



Figure 10 Walker plots of log C
P!3*4

versus r
.%!/

.

Insofar as all these relationships come down to
micromechanisms and the effect of remote biaxiality
on local stresses (particularly hydrostatic stress), the
following section is relevant.

4. Model for variation of R with biaxiality
Failure in ductile polymers is via micro voiding as can
be seen on the fracture surfaces, i.e. lots of fibrils even
on macro-brittle surfaces [20]. The distinction be-
tween ductile void growth and crazing which is seen
in some ‘‘brittle’’ polymers, e.g. polystyrene (PS),
PMMA, is often not a clear one. In crazes the zones
are in arrays with highly ariated fibrils. We assume
that a monotonic fracture occurs by the accumulation
of ‘‘microstructural damage’’ to a critical level. Let us
assume a generalized damage function given by

P f (r
H
/r6 )de6 "D (10)

where D is accumulated damage, f (r
H
/r6 ) is some

function of hydrostatic stress normalized by von
Mises stress and e6 is von Mises strain. (For polymers
whose yielding is pressure-dependent, questions of
‘‘normality’’ of the flow rules associated with the pres-
sure-dependent yield function come in [1] but for
present purposes we ignore that; we also presume that
the behaviour is isotropic.) At the von Mises strain to
fracture e6

&
(the upper limit of the integral in Equa-

tion 10), the accumulated damage reaches a critical
level D

#
. The magnitude of D

#
is determined from

a standard calibration testpiece, such as a simple ten-
sion specimen. The lower limit of the integral in Equa-
tion 10 is often taken as zero, but there could very well
be a cut-off e6

0
below which no damage is accumulated;

e6
0

could be biaxial-dependent too [21], but in the
absence of any information on that, we shall take it as
constant.

For linear loading paths where the biaxiality ratio
k"r

M#3!#,
/r

@@#3!#,
, (r

H
/r6 ) is given by [17]

(r
H
/r6 )"(k#1)/3(k2!k#1)1@2 (11)

Thus for uniaxial loading k"R, and (r
H
/r6 )"1/3;

for plane strain k"2 and (r
H
/r6 )"(3~1@2); for

equibiaxial tension k"1 and (r
H
/r6 )"2](3~1@2).

Hence, f (r
H
/r6 ) in the damage function is itself a func-

tion of k, f (k).
In ductile materials undergoing monotonic loading,

localized necking often precedes fracture. For
example, in the DENT geometry, the ligament may
neck down before fracture. Such necks are in plane
strain, because the ligament does not shorten during
necking. Because (r

H
/r6 ) is always (3~1@2) in plane

strain, but the (r
H
/r6 ) ratio of the earlier phase of

biaxial loading will have been different, (set by the
orientation of the cruciform specimen in the testing
machine), the damage integral has to be broken down
into events before and after necking, i.e. for linear
loading paths Equation 10 becomes

[ f (r
H
/r6 ) (e6

n
!e6

0
)]#[ f (3~1@2) (e6

f
!e6

n
)]"D

#
(12)

at fracture, with f (r
H
/r6 ) for the pre-necking stage

given by Equation 11.
It has been shown [17] that if crack propagation is

viewed as continuous reinitiation, then there is a rela-
tionship between e6

f
and R in plane stress, namely

e6
f
"[(n#1)R/Br

0
]1@(n`1) (13)

for a material following a r"r
0
e6 n stress—strain rela-

tion, with B the thickness of the sheet. Because the
damage equation gives the dependence of e6

f
on bi-

axiality k, Equations 10 or 12 and Equation 13 to-
gether give the variation of R or d

#
with k .

Fig. 11 shows how the Rice—Tracey model for void
growth, where f (r

H
/r6 )"exp(3r

H
/2r6 ), predicts for

1.5 mm thick ABS the variation of the critical crack
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Figure 11 Predictions of Rice—Tracey damage function for vari-
ation of monotonic d

#
with remote biaxiality.

opening displacement with remote biaxiality, using
Equations 12 and 13 and the relation R"mr

y
d
#
. The

shape taken by the d
#
versus k plot is interesting; as the

‘‘sideways’’ loading is increased, i.e. moving from right
to left along the abscissa, d

#
decreases and reaches

a minimum at k"1. For smaller k, the curve rises
again. (The curve is, in fact, ‘‘symmetrical’’ about
k"1 as the biaxiality ratios less than unity corres-
pond with their reciprocals for k(1.) Implicit in this
rise in d

#
for k(1 is, however, a presumption that the

crack propagates perpendicular to the greater load.
For k(1, this means that the crack should turn and
the two data points marked ‘‘x’’ did indeed turn during
propagation. The agreement is, perhaps, remarkable
because the d

#
values are derived from d

&
plots which

depend on the ligament breaking right across. This
they eventually do for k(1, but only by the two
curving cracks finally turning again near the end of
propagation to join up and sever the testpiece. In
other instances, particularly with metals that neck
across the ligament before crack propagation, d

#
values at k(1 are found smaller than the k"1
values, on the downwards extension of the d

#
versus

k (k'1) curve [22]. Even so, at small enough k,
however, the d

#
values rise again. Clearly this requires

much more investigation.

5. Conclusions
A novel test rig, permitting biaxial tensile loading in
a uniaxial testing machine, has been used for both
monotonic and fatigue fracture. In the case of com-
mercial ABS and PVC sheets of various thicknesses,
both monotonic ductile fracture toughness and fatigue
crack growth rates are affected by the remote biaxial
load ratios.

The monotonic toughness is least for equibiaxial
tension; it is greatest for uniaxial tension. The tough-
ness behaviour when the load parallel to the DENT
testpiece ligament is greater than that perpendicular
to it, depends on the extent of the necking along the
4356
ligament which precedes cracking: it is possible for
even lower toughnesses to be exhibited if the crack
does not climb out of the neck ‘‘groove’’. At large
enough transverse loads, however the crack turns and
climbs out of the ‘‘groove’’ to run approximately per-
pendicular to the transverse load. That involves
greater specific work of fracture. The overall depend-
ency of toughness on remote biaxiality seems to be
explicable in terms of void growth mechanics.

Fatigue crack growth rates decrease as the load
parallel to the ligament increases. In terms of
Paris/Walker type plots, n in (da/dN)"C(*K)n is
more or less unaffected by remote biaxiality, but C
decreases with increased transverse loading. The re-
duction in C corresponds with the reduction in mono-
tonic R or d

#
with remote biaxiality, and there may be

a relation but we have too few data to be sure.
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